Uniform regularity for the 2D Boussinesq system with a slip boundary condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity Criteria for the 2d Boussinesq Equations with Supercritical Dissipation∗

This paper focuses on the 2D incompressible Boussinesq equations with fractional dissipation, given by Λαu in the velocity equation and by Λβθ in the temperature equation, where Λ= √−Δ denotes the Zygmund operator. Due to the vortex stretching and the lack of sufficient dissipation, the global regularity problem for the supercritical regime α+β<1 remains an outstanding problem. This paper prese...

متن کامل

Traveling Waves in 2d Reactive Boussinesq Systems with No-slip Boundary Conditions

We consider systems of reactive Boussinesq equations in two dimensional strips that are not aligned with gravity’s direction. We prove that for any width of such strips and for arbitrary Rayleigh and Prandtl numbers, the systems admit smooth, non-planar traveling wave solutions with the fluid’s velocity satisfying no-slip boundary conditions.

متن کامل

Vorticity layers of the 2D Navier-Stokes equations with a slip type boundary condition

We study the asymptotic behavior, at small viscosity ε, of the NavierStokes equations in a 2D curved domain. The Navier-Stokes equations are supplemented with the slip boundary condition, which is a special case of the Navier friction boundary condition where the friction coefficient is equal to two times the curvature on the boundary. We construct an artificial function, which is called a corr...

متن کامل

Uniform Regularity for the Navier-stokes Equation with Navier Boundary Condition

We prove that there exists an interval of time which is uniform in the vanishing viscosity limit and for which the Navier-Stokes equation with Navier boundary condition has a strong solution. This solution is uniformly bounded in a conormal Sobolev space and has only one normal derivative bounded in L∞. This allows to get the vanishing viscosity limit to the incompressible Euler system from a s...

متن کامل

The no-slip boundary condition: a review

2 History of the no-slip condition 2 2.1 The previous centuries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Traditional situations where slip occurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 Newtonian liquids: no-sl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2013

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2012.10.051